home *** CD-ROM | disk | FTP | other *** search
Text File | 1996-07-03 | 7.0 KB | 209 lines | [TEXT/R*ch] |
- (* Intmap -- modified for Moscow ML from SML/NJ library v. 0.2.
- *
- * COPYRIGHT (c) 1993 by AT&T Bell Laboratories.
- * See file mosml/copyrght/copyrght.att for details.
- *
- * This code was adapted from Stephen Adams' binary tree implementation
- * of applicative integer sets.
- *
- * Copyright 1992 Stephen Adams.
- *
- * This software may be used freely provided that:
- * 1. This copyright notice is attached to any copy, derived work,
- * or work including all or part of this software.
- * 2. Any derived work must contain a prominent notice stating that
- * it has been altered from the original.
- *
- *
- * Name(s): Stephen Adams.
- * Department, Institution: Electronics & Computer Science,
- * University of Southampton
- * Address: Electronics & Computer Science
- * University of Southampton
- * Southampton SO9 5NH
- * Great Britian
- * E-mail: sra@ecs.soton.ac.uk
- *
- * Comments:
- *
- * 1. The implementation is based on Binary search trees of Bounded
- * Balance, similar to Nievergelt & Reingold, SIAM J. Computing
- * 2(1), March 1973. The main advantage of these trees is that
- * they keep the size of the tree in the node, giving a constant
- * time size operation.
- *
- * 2. The bounded balance criterion is simpler than N&R's alpha.
- * Simply, one subtree must not have more than `weight' times as
- * many elements as the opposite subtree. Rebalancing is
- * guaranteed to reinstate the criterion for weight>2.23, but
- * the occasional incorrect behaviour for weight=2 is not
- * detrimental to performance.
- *
- * Altered to work as a geneal intmap - Emden Gansner
- *)
-
- exception NotFound
-
- fun wt (i : int) = 3 * i
-
- datatype 'a intmap =
- E
- | T of {
- key : int,
- value : 'a,
- cnt : int,
- left : 'a intmap,
- right : 'a intmap
- }
-
- fun numItems E = 0
- | numItems (T{cnt,...}) = cnt
-
- local
- fun N(k,v,E,E) = T{key=k,value=v,cnt=1,left=E,right=E}
- | N(k,v,E,r as T n) = T{key=k,value=v,cnt=1+(#cnt n),left=E,right=r}
- | N(k,v,l as T n,E) = T{key=k,value=v,cnt=1+(#cnt n),left=l,right=E}
- | N(k,v,l as T n,r as T n') =
- T{key=k,value=v,cnt=1+(#cnt n)+(#cnt n'),left=l,right=r}
-
- fun single_L (a,av,x,T{key=b,value=bv,left=y,right=z,...}) =
- N(b,bv,N(a,av,x,y),z)
- | single_L _ = raise Match
- fun single_R (b,bv,T{key=a,value=av,left=x,right=y,...},z) =
- N(a,av,x,N(b,bv,y,z))
- | single_R _ = raise Match
- fun double_L (a,av,w,T{key=c,value=cv,left=T{key=b,value=bv,left=x,right=y,...},right=z,...}) =
- N(b,bv,N(a,av,w,x),N(c,cv,y,z))
- | double_L _ = raise Match
- fun double_R (c,cv,T{key=a,value=av,left=w,right=T{key=b,value=bv,left=x,right=y,...},...},z) =
- N(b,bv,N(a,av,w,x),N(c,cv,y,z))
- | double_R _ = raise Match
-
- fun T' (k,v,E,E) = T{key=k,value=v,cnt=1,left=E,right=E}
- | T' (k,v,E,r as T{right=E,left=E,...}) =
- T{key=k,value=v,cnt=2,left=E,right=r}
- | T' (k,v,l as T{right=E,left=E,...},E) =
- T{key=k,value=v,cnt=2,left=l,right=E}
-
- | T' (p as (_,_,E,T{left=T _,right=E,...})) = double_L p
- | T' (p as (_,_,T{left=E,right=T _,...},E)) = double_R p
-
- (* these cases almost never happen with small weight*)
- | T' (p as (_,_,E,T{left=T{cnt=ln,...},right=T{cnt=rn,...},...})) =
- if ln < rn then single_L p else double_L p
- | T' (p as (_,_,T{left=T{cnt=ln,...},right=T{cnt=rn,...},...},E)) =
- if ln > rn then single_R p else double_R p
-
- | T' (p as (_,_,E,T{left=E,...})) = single_L p
- | T' (p as (_,_,T{right=E,...},E)) = single_R p
-
- | T' (p as (k,v,l as T{cnt=ln,left=ll,right=lr,...},
- r as T{cnt=rn,left=rl,right=rr,...})) =
- if rn >= wt ln then (*right is too big*)
- let val rln = numItems rl
- val rrn = numItems rr
- in
- if rln < rrn then single_L p else double_L p
- end
-
- else if ln >= wt rn then (*left is too big*)
- let val lln = numItems ll
- val lrn = numItems lr
- in
- if lrn < lln then single_R p else double_R p
- end
-
- else T{key=k,value=v,cnt=ln+rn+1,left=l,right=r}
-
- local
- fun min (T{left=E,key,value,...}) = (key,value)
- | min (T{left,...}) = min left
- | min _ = raise Match
-
- fun delmin (T{left=E,right,...}) = right
- | delmin (T{key,value,left,right,...}) = T'(key,value,delmin left,right)
- | delmin _ = raise Match
- in
- fun delete' (E,r) = r
- | delete' (l,E) = l
- | delete' (l,r) = let val (mink,minv) = min r in
- T'(mink,minv,l,delmin r)
- end
- end
- in
- fun empty () = E
-
- fun insert (E,x,v) = T{key=x,value=v,cnt=1,left=E,right=E}
- | insert (T(set as {key,left,right,value,...}),x,v) =
- if key > x then T'(key,value,insert(left,x,v),right)
- else if key < x then T'(key,value,left,insert(right,x,v))
- else T{key=x,value=v,left=left,right=right,cnt= #cnt set}
-
- fun retrieve (set, x) = let
- fun mem E = raise NotFound
- | mem (T(n as {key,left,right,...})) =
- if x > key then mem right
- else if x < key then mem left
- else #value n
- in mem set end
-
- fun peek arg = (SOME(retrieve arg)) handle NotFound => NONE
-
- fun remove (E,x) = raise NotFound
- | remove (set as T{key,left,right,value,...},x) =
- if key > x then
- let val (left',v) = remove(left,x)
- in (T'(key,value,left',right),v) end
- else if key < x then
- let val (right',v) = remove(right,x)
- in (T'(key,value,left,right'),v) end
- else (delete'(left,right),value)
-
- fun listItems d = let
- fun d2l E res = res
- | d2l (T{key,value,left,right,...}) res =
- d2l left ((key,value) :: d2l right res)
- in d2l d [] end
-
- fun app f d = let
- fun a E = ()
- | a (T{key,value,left,right,...}) = (a left; f(key,value); a right)
- in a d end
-
- fun revapp f d = let
- fun a E = ()
- | a (T{key,value,left,right,...}) = (a right; f(key,value); a left)
- in a d end
-
- fun foldr f init d = let
- fun a E v = v
- | a (T{key,value,left,right,...}) v = a left (f(key,value,a right v))
- in a d init end
-
- fun foldl f init d = let
- fun a E v = v
- | a (T{key,value,left,right,...}) v = a right (f(key,value,a left v))
- in a d init end
-
- fun map f d = let
- fun a E = E
- | a (T{key,value,left,right,cnt}) = let
- val left' = a left
- val value' = f(key,value)
- in
- T{cnt=cnt, key=key,value=value',left = left', right = a right}
- end
- in a d end
-
- fun transform f d = let
- fun a E = E
- | a (T{key,value,left,right,cnt}) = let
- val left' = a left
- val value' = f value
- in
- T{cnt=cnt, key=key,value=value',left = left', right = a right}
- end
- in a d end
-
- end
-